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ABSTRACT

An analysis is given of the revised Skylab Airlock
Module coolant loop (Concept 6-C) designed to provide supple-
mental battery cooling and to maintain a nominal 47°F coolant
inlet temperature to the Airlock Module condensing heat
exchangers. Inequalities are derived in terms of coolant
temperatures (radiator-capacitor outlet, C&D panel outlet,
and radiator inlet temperatures) to determine if the three
independent vernatherm coolant control valves can maintain
their respective set point temperatures. Three operational
modes are considered: Non-EVA, Q =0; Positive EVA,

Q >0; and Negative-EVA, Q

suit
suit suit<0'
The analysis is incorporated into a subroutine-
coded program which will f£find use in the Skylab atmospheric
thermal model. A subroutine flow diagram and some parametric
results are included.
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Conceivably other combinations might also occur.

In order to update the simplified Skylab Cluster atmos-

pheric-fluid loop model described in an earlier memorandum?, and
to permit its use with the revised coolant loop, a computer sub-
routine has been written which proportions the total coolant pump
flow through the three control valves and the several loop
branches. In addition to the three desired set point tempera-
tures, other key input variables are:

(1) Tl’ radiator inlet temperature

(2) T2, radiator-capacitor outlet temperature
(3) T
(4) Q

4’ C&D panel outlet temperature

EVA heat load (may be zero, positive or negative),
BTU/Hr
(5) Wl' total pump flow, lbm/hr.

suit’

Several assumptions have been made in the analysis which
follows. Since the fluid-to-fluid heat transfer characteristics
of the Battery/Suit Cooling Module are unknown, heat transfer in
this module is assumed to occur without loss from one fluid path
to another. The control valves are assumed to function as follows:
if possible, a valve will mix its two inputs to maintain the
desired output set point temperature; if the desired set point
temperature cannot be maintained, one port will open fully and the
other will close so that the output fluid is as close to the
desired temperature as possible. A constant fluid specific heat
is also assumed.

Analysis

The analysis is based on the schematic, Figure 2, which
shows the coolant mass flow rates and temperatures to be deter-
mined. For convenience, we first define a temperature valve posi-
tion by the following sketch and flow ratios:
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> e

2 "Thermal Control Capability for Crew Comfort in the Skylab
Orbital Workshop", Memorandum for File, D. P. Woodard, March 24,
1971.
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Using a constant coolant specific heat, energy balances
at the three control valves V1, V2, and V3 are, respectively:

(3) T, Wy = Q3/C, + T, (W =W, )= T.W,

(4) T2W3 + Q3/cp + Tl W4 = T6 W6

(3) TyWs + Tg Wg + Qgyi¢/Cp = ToWy

Q3 is the supplemental heat removed from the coolant entering the

battery cold plates at the regenerative heat exchanger and trans-
ferred to the flow, W3. quit is the EVA heat load, which may be

positive, negative, or zero, transferred through the Battery/Suit

Cooling Module to either of the flows W, or Wee

Rearrangement of (3) through (5) with the definitions (1)
and (22 applied to the 47°F temperature control valves gives the
following expressions for v, and V., in terms of flow rates and

temperatures. 1 2
(6) V., = v_qi = Wl(TG_T4+T5)+W3 (TG_TZ)—WZTG
2 W Tl(WI—W2+w3)
(7) v = Yq_fi = T7-T6-quit/wlcp
3 Wi (T2-T6)
We consider three cases: quit = 0, Non-EVA mode; quit > 0,

positive EVA mode; Q < 0, negative EVA mode.

suit

Case I : Non-EVA Mode; quit = 0.

With quit = 0, V3 is zero, and the total cold radiator
coolant flow, W2 = W3, passes through the battery regenerative

heat exchanger to remove the maximum amount of heat from the




battery inlet flow. In this case, T5, T6' and T, can be main-

7
tained at their respective temperatures provided:

(8) T2 < (T6+T

57Ty)

This inequality is obtained from (6) by setting V,=0 and noting

that the maximum battery cooling will occur when W1=W2=W3; i.e.,

when the radiator bypass flow is zero. Under the condition

that (8) is valid, the subroutine computes an initial V; from
(6) from which a new estimate of W2=W3 can be determined since
Wl is known. The new W2 is averaged with its previous value and

a new V, obtained. The iteration continues until V., converges,
at which time we know the flows W, W, and W Q3 is then given by

(9) Q3 = (Wl cp) (T4—T5) Btu/hr.

When T2 > (T6+T5-T4), the desired battery inlet temperature can-

not be maintained. However, if T2<T6, some heat can still be

transferred from the battery coolant and is given by

(10) Q3 = (T6—T2) W cp Btu/hr.

3

Since Tg is maintained, T, is also properly controlled since We=0.

Case II: Positive EVA Mode; Q > 0.

suit

Coolant flow is controlled by V3 in this mode. The flow,

W5=W2-W3, is adjusted so that the addition of quit results in T3

equal to the desired set point temperature, T4. With this condition
T6 must be maintained simultaneously. Computation proceeds in the

following manner:

(a) V3 is computed from (7), which in turn establishes the
flow, (W2—W3).




(b) From (6), V2 will be open when the numerator is
positive, i.e.,

W, (T,-T.-T_.)+W,(T_).
1'"4 "5 76 276

If this inequality is satisfied with W1=W2, then all

set points can be maintained. Subsequent iteration

on V, (Equation 6), as described previously, deter-

mines the flows Wl,Wz, and W3.

(c) If the inequality (11) is not satisfied with Wy=W
W3 is known (W3=W2-W5), and Q3 is determined from

(10). T6 and T7 will be maintained; T5 will not.

2'

Case III: Negative EVA Mode; Q 0

., <
suit

In the negative EVA mode, heat is transferred from the
hot fluid flow (Wl—w2+W3) to the EVA suit circuit. Consequently
V3 is set to zero, and W2=W3. Vl operates independently to main-
tain Ty, SO that Q3 is given by (9). If the inequality (8) is
~ satisfied, TS and T6 can be maintained at their respective set
points. V., is adjusted as before by iteration to obtain the radi-
ator bypass flow, (Wi-WZ). Depending on |quit|’ T, will fall
below its set point of 47 degrees.

In the event that (8) is not satisfied, V-, and V, are
set to zero (closed); Wl=W2=W3; Q3 is given by (10); T5 will
exceed 40°F; and T7 will be less than 47°F. A somewhat more satis-

factory logic might be programmable in this instance if the heat
transfer characteristics of the battery regenerative heat exchanger
were known; i.e., T5 could decrease to 40°F; T6 could increase

above 47°F; and T, might thus approach 47°F more closely.

A logic diagram is given in Figure 3 which will amplify
the above discussion. Figures 4, 5, and 6 show some parametric



results for the three modes, NON-EVA, POSITIVE EVA, and NEGATIVE
EVA, as a function of radiator inlet temperature, Tl'

Utilization of Subroutine

The subroutine, FL6C (W1, Tl1l, T2, T4, Qsuit, W2, W3,

w4, W5, W6, V2, V3, ORGEN)3, computes only coolant flow rates

for the revised AM coolant loop. Temperatures may be obtained
by calling on FL6C in a CINDA atmosphere-coolant loop thermal
model, such as described in Reference 2, and using the several
flow rates to establish fluid loop conductors in the conventional
manner. An AM radiator model, either a thermal model or a para-
metric representation will also be required. The iteration
schemes used to determine the respective flow rates may require
some revision for extreme hot and cold conditions. However, this

should be nominal. Copies of the program and results are avail-
able from the author.

A e
1022-DPW-tla D. P. Woodard

Attachments
Figures 1-6

3 ORGEN is synonymous with Q3 in the analysis and shown in
Figure 3.
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r TTEST2- 76+ 75 - T4 ]

YES
NO

“BATTERY INPUT TEMP. WiLL EXCEED 40 DEG."
V2=0,VIc0 WZ:W)Wl-wl
WA= 0. W5 -0, W W3
QRGEN = (T6 - T2) « W3« 430
[CRERT

W2T60 - W1

V2TIH 5 AW1-(TB-TAsTS) - (W2TIKI T2(T 1w}
W2THD = 1L -V2THH W)
OIFF - ABS (W2T{1)-W2TiK}

RADIATOR BYPASS AND REGEN WX FLOWS DO
NOT CONVERGE IN 25 ITERATIONS™
GoTo 10

T

W2 = W2T(11, V2 = V2TIN, W3 = W2,

Wa = W1-W2, W5 = O W6 » W1 _W2eW3
QRGEN = {T4-T5)* W1 *.430

GO TO 10

vaT(u =0

[ICETE

! WL (T T4+ TSI WS- T6-W3-T2)
(T1eW1-W5)

K-
vaTin

WA V2TU) - (W1-wSs)

“EVA MODE, FLOW RATES DO NOT CONVERGE
IN 15 ATTEMPTS™

- 174 TH) W1 . 430
V2o w2t

[

V3 = (T7-T6-QSUIT/IW+ 4301/(T2-T6}

VZ2-0.V1 0. W2 WILWI WIWS 0. We wi
QRGEN (16720 - W1+ 430

NEG EVA MODE, BATT INPUT TEMP WiLL
EXCEED 40 DEGREES™

“BATTERY INPUT TEMP, WILL EXCEED 40 DEG.”
V2 0. W6+ W3

w.
QRGEN = (T6-72) + W3 » 430

W2TIK) = W)

VZTH) - IW1{TB- T4 TE) - W2TIK)-T21ATTsW T
w2TH)  fovaTud - Wl
DIFF - ABS tW2TiI)- W2T{KN

RADIATOR BYPASS ANO REGEN HX FLOWS DO NOT
CONVERGE IN 15 ITERATIONS

17

W2 = W2Th

QRGEN = {TA-T5) - W1 - 430

FIGURE 3

10

RETURN
EN
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